
! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Digole Serial:UART/I2C/SPI Character/Graphic LCD/OLED Display Module
Programmer Manual 

(last updated: April 25, 2017)

This manual may be modified without notice 

� of �1 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Upgrade able firmware 6 --

Set up the communication mode 6 --

Brief of Commands 6 ---

Escape commands since V4.0 7 --

Legend: 8 ---

Deal with pixels 255 to 511 8..
Known Bugs 8...
Flash Memory Map 9 --

Port Connection 10 ---

Command summery 12 ---

Immigrate software to V3.3 of firmware 12 ---------------------------------------

256 color code 13 ---

Special Command in V4.0V firmware 13 ---

Video Box (VIDEOxywh\x00/\x01….data) 13..
Special Command in V4.0B/V4.0V firmware 14 -----------------------------------

Set image’s background transparent (“TRANS 0/1”) 14.....................................
Display characters 14 ---

 Display a string (TT…..\x00) 14..
 Move current position(TPxy) 15..
 Enhanced move current position(ETPxy) 15..
 Move position to last(ETB) 15...
 Move position offset(ETOxy) 15..
 Cursor(CSd) 15...
Draw graphics 16 --

 Set current graphic position(GPxy) 16..
 Draw a pixel(DPxy) 16..
 Draw line(LNx1y1x2y2) 16..
 Draw line to(LNxy) 16...
 Draw rectangle(DRx1y1x2y2) 16..

� of �2 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

 Draw filled rectangle(FRx1y1x2y2) 16..
 Draw circle(CCxyrf) 17..
 Draw image 17..
 Move area on the screen(MAxywhOxOy) 18..
Drawing Decoration 19 ---

 Clear screen(CL) 19..
 Set background color(BGC) 19...
 Set foreground color(SCc,ESCrgb) 19..
 Set line pattern(SLPd) 19..
 Set draw direction(SDd) 19...
 Set draw mode(DMd) 19...
 Set output/draw window(DWWINxywh) 20...
 Reset draw window(RSTDW) 20..
 Clear draw window(WINCL) 20...
For Mono display only 20 --

 Refresh screen instantly(FS0/1) 20..
 Set screen Normal/Inverse(INV0/1) 21...
Fonts 22 ---

 Change current font(SFd) 22..
 Download standard user font(SUFnL…d…) 22..
 Download user font to flash chip(FLMWRal…d…) 22......................................
 Use user font in flash chip(SFFa) 23..
Command Set 23 --

 What is command set? 23..
 Write command set to flash(FLMWRal…d…) 23..
 Run command set(FLMCSa) 24...
Read data from communication port 24 --

Use EEPROM(V3.3) 24 --

 Write data to EEPROM(WREPal…d…) 24...
 Read data from EEPROM(RDEPal) 24..

� of �3 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Use Flash 24 --

 Use flash in MCU 24...
 Use flash in flash chip 24..
 Write data to flash(FLMWRal…d…) 25...
 Run command set(FLMCSa) 25...
 Read data in flash chip(FLMRDal) 26...
 Erase flash memory in flash chip(FLMERal) 26..
Touch Panel 27 ---

 Calibrate touch screen(TUCHC) 27..
 Read touched coordinate(RPNXYW) 27...
 Read a click event(RPNXYC) 27..
 Read touch panel instantly(RPNXYI), check screen pressed 27......................
 Read voltage(RDBAT) 27..
 Read analog(RDAUX) 27..
 Read temperature(RDTMP) 28...
Power management 28 ---

 Backlight brightness(BLd) 28..
 Turn screen on/off(SOOd) 28..
 Turn MCU off(DNMCU) 28..
 Turn module off(DNALL) 28..
Setting and configuration 29 --

 Start screen(welcome screen or splash screen) 29..
 Enable/disable start screen(DSSd) 29..
 Configuration show on/off(DCd) 29...
 Download start screen to module(SSSl…d…) 29...
 Change I2C address(SI2CAa) 29...
 Set SPI mode(SPIMD0~3) 30...
 Change UART baud(SBrate) 30...
 Config universal character LCD adapter(STCRcr\x80\xC0\x94\xD4) 30..........
 Config universal graphic LCD adapter(SLCDx…) 30..
 Adjust LCD contrast(CTx) 31..

� of �4 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Others 31 ---

 Delay a period(DLYx) 31...

� of �5 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Upgrade able firmware
The firmware on most of our display modules are upgrade able, please visit the firmware page for details:
www.digole.com/fw

Set up the communication mode
 
There are 3 different communication modes on all products: UART, I2C and SPI, what you
need is just use solder to short the I2C/SPI jumper on adapter and make it works at I2C or
SPI, if both jumpers are open, it works at UART, you can find a similar jumper like this: on
board.
PROTOCOLS:

• UART : 8-N-1, 8bits, No parity bit, 1 stop bit.

• I2C: Slave Mode, 7-bit address, default address is Hex:27, change able. This mode may give you a headache
due to more signal options in I2C, but we make it works as standard, you just need setup your I2C on master
controller as Standard Master Mode.

• SPI: 8-bits, MSB first, data on raise edge of SCK sampled; this is Standard setting on SPI too.

Brief of Commands

TEXT

Position adjust:
- “TP" set text position,
- “ETP" enhanced set text position,
- “ETO" set text offset,
- “ETB" back to last text position
Draw Text:
- “TT" display text,
- “TRT" text return

Appearance adjust:
- “SF" set font,
- “SFF" set font in flash,
- “SUF” save user font,
- “SC" set drawing color (8bit format),
- “ESC” enhanced set drawing color

(262K),
- “SD” set direction,
- “CS” cursor on/off,
- “DM" drawing mode

Color screen V3.0:
- “BGC" use current color as

background,
- “DWWIN" set drawing window,
- “RSTDW" reset drawing window,
- “WINCL" clear drawing window

use background

Graphic

Position adjust:
- “GP” set graphic position,
Draw functions:
- “DP” draw pixel,
- “LN" draw line,
- “LT” draw line to,
- “DR” draw rectangle,
- “FR" draw filled rectangle,
- “CC” draw circle,
- “MA” move an area,
- “DIM" display mono image,
- "EDIM1", "EDIM2", “EDIM3"

display color image (256, 65K
262K color)

Appearance adjust:
- “SD” set direction,
- “SC" set color,
- “ESC” enhanced set color,
- “SLP” set line pattern,
- “DM" drawing mode

Color screen V3.0: "BGC",
"DWWIN", "RSTDW", “WINCL"
same as above

Communication “SI2CA”-Set I2C address, “SB”-set UART baud rate, “DC”-display module configuration

Power Manage “BL”-adjust backlight, “DNALL”-put module in sleep, “DNMCU”-put MCU sleep, “SOO”-turn screen on/off

Screen
“SSS”-Save start screen, “DSS”-display start screen, “SOO”-turn screen on/off, “MCD”-send command to screen, “MDT”-
send data to screen, “CL”-clear screen use background color, “CT”-set contrast, “SLCD”-config mono LCD (ST7920,
ST7565,KS0108), “VIDEO”- Write Video data direct to screen, V4.0V

Touch Panel “RPNXY”[I/W/C]-read x,y, I=instant, W=wait touched, C=Click, “TUCHC”- calibrate touch panel, “RDBAT”-read battery
voltage, “RDAUX”-read aux pin, “RDTMP”-read chip temperature,

Flash Memory “FLMER”-flash erase, “FLMRD”-flash read, “FLMWR”-flash write, “FLMCS”-run command set in flash,“SFF”-set font in
flash

EEPROM “WREP”-write data to EEPROM, “RDEP”-read data from EEPROM

� of �6 43

http://www.digole.com/fw

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Escape commands since V4.0
Note: since version V4.0, the ESCAPE commands added, now, user can choose to use letter commands or
escape commands or combine them together, all ESC commands are 2 bytes, first byte must be value of 27
(ESC) and second byte is the index of command. As the result of our test: by using ESCAPE commands can
accelerate the average processing speed up to 3%.
e.g.: Letter command: “TT” = ESC command: 27, 01, both are 2 bytes, but for longer letter commands, it will also
save some program space for user.
here is the cross reference, the number from TT is 1, and increased 1 after each commands:

“TT” (1), "ETB" (2), "ETP" (3), "ETO" (4), "ESC" (5), "SI2CA" (6), "SC" (7), "SB" (8), "SD" (9), "SF" (10),
"SSS" (11), "SUF" (12), "SOO" (13), "SLP" (14), "FR" (15), "LN" (16), "LT" (17), "DC" (18), "DIM" (19), "DP" (20),
"DR" (21), "DSS" (22), "DOUT" (23), "TP" (24), "BL" (25), "TRT" (26), "GP" (27), "CL" (28), "CC" (29), "CS" (30),
“CT" (31), “MA" (32), “MCD" (33), "MDT" (34), "DM" (35), "EDIM" (36), "FS" (37), "WREP" (38), "RDEP" (39),
"INV" (40),
"DNALL" (41), "DNMCU" (42), "SLCD" (43), "RPNXY" (44), "TUCHC" (45), "RDBAT" (46), "RDAUX" (47),
"RDTMP" (48), "FLMER" (49), "FLMRD" (59),
"FLMWR" (51), "FLMCS" (52), "BGC" (53), "DWWIN" (54), "RSTDW" (55), "WINCL" (56), "SPIMD" (57), "FTOB" (58),
“DLY” (59), "TRANS" (60),
“VIDEO" (61) 

Output Window “DWWIN”-set output window,”WINCL”-clean the output window,”RSTDW”-reset the output window to full screen

Other “DLY”-delay a period

� of �7 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Legend:

Deal with pixels 255 to 511
How do we recognize value from 0 to 511 used in position and length of pixel (x,y,w,h,r)?
In most small screen, the screen size usually less than 255, one byte of data can handle such screen, but in larger
screen, the size may exceed 255, in order to make your code compatible for all size of screen, we use this technical:
if the value is <255, just send one byte of the value, if >=255, send first byte of 255 then follow the rest of value, eg.:
for value 120, just send one byte of value of 120, if the value is 310, send 255 first, then value of 55 as second byte,
the value 255+55=310.
sample routine in C:

void writePosition(int p)
{

if(p>255)
{

write(255); //write a byte to COM port
p-=255;

}
write(p);

}

Known Bugs
V3.3: SPI mode was set as mode 2 by accidentally, all other versions were mode 0, all modes list here: 
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
V3.0: draw window function not adjusted correctly after change draw direction, you need set draw direction first, then
set a draw window. 

� of �8 43

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Flash Memory Map
Flash memory size: 2MB~16MB if flash chip installed, 16KB if none flash chip installed.
Usage: 5 block of 65KB from address 0, used for welcome screen and 4 user fonts if flash chip installed. otherwise:
0~2047B for welcome screen, and 4x3584B for 4 user fonts.
User fonts: unlimited user fonts in flash chip, or 4 user fonts in 16KB flash.
Command sets: unlimited command set in flash chip, V3.3: unlimited command set in 16KB flash.
Data protection: data in 16KB flash can’t be read out, but data in flash chip can.

� of �9 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Port Connection
In the 5 pin header modules, only I2C mode can transmit and receive data, other mode only can transmit data to
display module, if you need read data from EEPROM(V3.3), you only can use I2C mode to do that. All modes can
transceive data in 6 pin header modules
On the 2 wire SPI mode, if the master circuit was setting slow, the C:4.7uF and R:51K on SS pin, build a RC delay
circuit, it will disable the SPI port for about 200ms when power on, the 10K on CLK ground noise if SCL floating.
The 2 pull resistors need over 10K on 5 pin header module, if they are too low, there is a problem when transfer data
from slave to master. 

� of �10 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

SPI transceiver data flow chart:

� of �11 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Command summery
There are about 53 different commands usable in Digole’s serial display modules, that include:
1) Display characters
2) Draw graphics
3) Drawing decoration
4) Fonts
5) Command set
6) Use EEPROM
7) Use flash memory
8) Power management
9) Operating touch screen panel
10) Setting and configuration
11) Others

Immigrate software to V3.3 of firmware
If you already developed the software before for our display module with older firmware version than V3.3, some
modification need to be done in order to use the newest module:
1) value 0, 13 and 15 can be used to terminate the string in “TT” command, but in V3.3, only value of 0 used for

that, value 13 used to move cursor to next line, and value 15 used to move cursor to the begin of line.
2) set background color command (BGC) changed. A byte of background color should follow to “BGC” in new

version, and not affect the foreground color, but in old version, “BGC” only copy the color from foreground to
background. 

eg.: set a red background: “BGC\xE0” in � , “SC\xE0BGC” in � , sample code  
void setBgColor(uint8_t color) //set current color as background

 {
#ifdef V33
 write("BGC");
 write(color);
#else
 write("SC");
 write(color);
 write("BGC");
#endif
 }
3) the sequence of 2 byte for font’s length when downloading the user font is MSB, LSB in new version, but it was

LSB, MSB in older version. 
Sample code: 
void downloadUserFont(int lon, const unsigned char *data, uint8_t font_sect) {

 uint8_t c;
 unsigned char b;
 write("SUF");
 write(font_sect);
#if defined(V33)
 write((unsigned char) (lon / 256));
 write((unsigned char) (lon % 256));
#else

� of �12 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

 write((unsigned char) (lon % 256));
 write((unsigned char) (lon / 256));
#endif
 b = 0;
 for (int j = 0; j < lon; j++) {
 c = pgm_read_byte_near(data + j);
 write(c);
 if ((++b) == 64) {
 b = 0, delay(40); //delay 40ms
 }
 }
 }
4) welcome screen and commands set, you only need add an extra value of 255 to indicate the end of data in new

version, but in older version, you need put the data length at the beginning of data. 
welcome screen changed to commands set format in V3.3 on monochrome screen too, if your welcome screen is
bitmap, please use our online tool to convert it to commands set: 
http://www.digole.com/tools/Mono_welcome_to_Commands_set.php

5) now all multi-bytes of value which indicate the length, address, position changed to MSB, LSB format, the user
will not be confused any more

256 color code
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

Special Command in V4.0V firmware

Video Box (VIDEOxywh\x00/\x01….data)
This command let user to send raw image data to the LCD panel directly, after command “VIDEO”, follow by 2 integer
data x, y to indicate the top-left position counted as pixels where of the video box, the available value of x,y are from
0 to 65535 but not exceed the LCD panel size, then 2 bytes of value to indicate the box width and height, the
available value are from 0 to 255.
After defined the video box, the next byte of value indicate the color depth of each pixel, if value is 0, the color depth
is 16BIT(2 bytes data) : RRRRRGGG GGGBBBBB, if value is 1, the color depth is 18BIT (3 bytes data): RRRRRR00,
GGGGGG00, BBBBBB00, except 2.6” IPS module, which only accept 18BIT (3 bytes data) with the format as:
0RRRRRR0, 0GGGGGG0, 0BBBBBB0.
Then all the coming data from serial port will be sent to the video box directly.
How to exit the video mode? if user want to exit video mode and display other things on the screen, just stop send
the data to the display, wait about 120ms, the module will exit video mode, and all following datas are treated as
regular commands.
The maximum speed: UART mode-460800bps, I2C->400K bps, SPI-10MHz.
Only setRotation command-“SD” affect the video command, other decoration commands are ignored.
Here is the example code for reference:
 writeStr(“VIDEO”); //"VIDEO" command
 writeByte(0); //the X=0 position of top-left for Video window
 writeByte(0);

� of �13 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

 writeByte(0); //the Y=30 position
 writeByte(30);
 writeByte(150); //the width of Video window, here is 150pixels
 writeByte(100); //the height of Video window, here is 100pixels
 writeByte(0); //the color format is 16bit, if the value is 1, the format is 18bit, doesn't matter on 2.6" IPS display
 delay(300); //give the display enough time to init the Video box
 for(long int n=0;n<150*100*2*20;n++) //send 20 frames data to display
 writeByte(data[n]);
 delay(200); //this delay will cause the Digole display exit the "VIDEO" mode
 printText(“Thank you!”); //print “Thank you!” on the screen
 ….. more your code

Special Command in V4.0B/V4.0V firmware

Set image’s background transparent (“TRANS 0/1”)
When we show an image (256, 65K or 262K color) on the screen, the image occupy a rectangle area, this command
can change the image shape on the screen, the black pixels in the rectangle area can be transparent, in order to do
this, just set the color to be black (00) where want it to be transparent, then set “TRANS\x01” command, here is our
logo shows on a blue background when TRANS=0 and TRANS=1:

 Digole’s Logo TRANS=0 TRANS=1
Note: the drawing modes: “copy/and/or/xor/not” will affect the display image function now in V4.0, that was not affect
in earlier version of firmware.

Display characters

 Display a string (TT…..\x00) � � � �
Command: TT. following with characters until value 0 received, the value 0 also is the terminator of a regular string.
This command display a giving string on the current position, the position adjusted automatically, if the position reach
the most right of screen, it move to the beginning of next line of character, the module can calculate the next
character line according the current using font’s size.
The value 10 and 13 (\n and \r in C, LF and CR in ASCII table) can move the current position, value 10 move to next
line, value 13 move to the beginning of current line, use 10 and 13 move to the beginning of next line.
eg.:
“TTHello\nDigole” output on screen:
Hello
 Digole
“TTHello\n\rDigole” output on screen:

� of �14 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Hello
Digole
Arduino lib function: drawStr(x,y,string),print(char),print(string),print(int).

 Move current position(TPxy) � � � �
Command: TP. follow by x,y position, the x,y value is not refer to pixels, they are the column and row value that MCU
calculated based on the font’s size (usuall use space size to calculate current font’s size).
The top-left position is: 0,0.
Arduino lib function: setPrintPos(x,y,0); drawStr(x,y,string);

 Enhanced move current position(ETPxy) � � �
Command:ETP. follow by x,y position in pixels, this function can adjust the text position as pixels on screen.
The top-left position is: 0,0.
Arduino lib function: setPrintPos(x,y,0);

 Move position to last(ETB) � � �
Command:ETB. after each character printed on screen, the current position is adjust to new value, the MCU also
remembered the last character’s position, if you want print few characters at same position, you can use this function.
eg.: print a bold K, the command sequence is: “TTK\x00ETB ETO\x02\x00TTK”, in here we use move position offset
command, it move the last position 2 pixels right.
Arduino lib function: setTextPosBack();

 Move position offset(ETOxy) � � �
Command: ETO, follow by x,y value in pixels, the range of x,y value is -127~127, it adjust the current position with
the relative value.
eg.: if current position is 46, 30, and the x=-10, y=5. after run this command, the new position is:36,35.
Arduino lib function: setTextPosOffset(x,y);

 Cursor(CSd) � � � �
Command: CS, follow by a value 0 or 1, if d=1, the module will show a small cursor at the current position, otherwise,
no cursor displayed.
Sorry, the cursor on function not always work properly for some reason, for example, when the cursor show up, you
clear the area where cursor in, the cursor is disappeared, but the module still think it’s show up, this will make it
massed when module blinking the cursor.
Arduino lib function: enableCursor(); disableCursor();

� of �15 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Draw graphics
CGP—————Current Graphic Position

 Set current graphic position(GPxy) � � �
Command:GP. follow by x,y value in pixels, this function is same with “ETP” since firmware V3.0 and later, but, in
older version before V3.0, the CGP and text position are separated.
Arduino lib function: setPrintPos(x,y,0);

 Draw a pixel(DPxy) � � �
Command:DP, follow by x,y value in pixels. This function draw a pixel at (x,y) position using foreground color (set by
commands “SC” or “ESC”), the pixel also logic operate(draw mode, set by “DM” command) with existing pixel at
same position.
This function doesn’t change CGP.
Arduino lib function: drawPixel(x,y);

 Draw line(LNx1y1x2y2) � � �
Command:LN, follow by two coordinates which indicate where the line drawing from and to (x1,y1)(x2,y2) in pixels,
the foreground color and draw mode affect this function, also affected by line pattern (set by command “SLP”).
The CGP also move to (x2,y2) after function executed.
eg.: draw a line from (30,40) to (200,300), the command sequence is this: “LN\x1E\x28\xC8\xFF\x2D”, because the
value of 300 exceed one byte, you need use 2 bytes format.
Arduino lib function: drawLine(x1,y1,x2,y2); drawHLine(x,y,w); drawVLine(x,y,h);

 Draw line to(LNxy) � � �
Command:LT, follow by the destination coordinate (x,y) in pixels, this function draw a line from current position to
(x,y), everything else same as “draw line” function.
The CGP move to (x,y).
Arduino lib function: drawLineTo(x,y);

 Draw rectangle(DRx1y1x2y2) � � �
Command: DR, follow by the top-left coordinate (x,y), and the right-bottom coordinate, all in pixels, this function affect
by foreground color, draw mode and line pattern.
The CGP move to (x2,y2).
Arduino lib function: drawFrame(x,y,w,h); //Arduino lib use width and height follow (x,y)

 Draw filled rectangle(FRx1y1x2y2) � � �
Command: FR, this function similar with “draw rectangle”, but will use current foreground color, draw mode and line
pattern to fill this rectangle.
The CGP move to (x2,y2).
Arduino lib function: drawBox(x,y,w,h); //Arduino lib use width and height follow (x,y)

� of �16 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

 Draw circle(CCxyrf) � � �
Command: CC, follow by the coordinate of circle center(x,y), then the radius, the “f” is indicate the circle is filled or
not, if f=1, the circle is filled, this function affect by foreground color and draw mode, but not affected by line pattern.
The CGP move to (x,y).
Arduino lib function: drawCircle(x,y,r,f); drawDisc(x,y,r);

 Draw image
There are 4 different functions for drawing images, the difference are on the color depth which function can draw:

1) Draw black/white image (DIMxywh…d…): � � �
Command: DIM, follow by the top-left coordinate (x,y) of the image, then image width (w), height (h), then follow the
image data (…d…), each bit represent a pixel in the image.
Data in one byte can’t cross different lines, that means, if the width of image is 12 pixels, you need 2 bytes for each
line. MSB is on the left side.
This function affected by foreground color and draw mode, that means you can display different color of image use
same command, but just set different foreground color before drawing.
CGP: not change.
Arduino lib function: drawBitmap(x,y,w,h,*data);

2) Draw 256 color of image(EDIM1xywh…d…):� �
Command: EDIM1, everything similar with “DIM”, except following:
a) one byte represent a pixel, so, the color depth is 256, the color format is (MSB-LSB):RRRGGGBB (332)
b) draw mode and foreground color will not affect it.
CGP: not change
Arduino lib function:drawBitmap256(x,y,w,h,*data);

2) Draw 64K color of image(EDIM2xywh…d…):� �
Command: EDIM2, everything similar with “EDIM1”, except this function use 2 bytes to represent one pixel, the color
depth is 64K, the color format is: (MSB-LSB):RRRRRGGG , GGGBBBBB(565).
Arduino lib function: no

2) Draw 262K color of image(EDIM3xywh…d…):� �
Command: EDIM3, everything similar with “EDIM1”, except this function use 3 bytes to represent one pixel, but only
the 6 MSB used for a color, the color depth is 262K, the color format is: (MSB-LSB):00RRRRRR, 00GGGGGG,
00BBBBBB.
CGP: not change
Arduino lib function: drawBitmap262K(x,y,w,h,*data);

� � Draw window introduced since V3.2, all coordinate (except draw image) were refereed to draw window.

� � NOTE: if you use draw image function in command set, you don’t need set (x,y) coordinate, the module will
use CGP as (x,y), this setting will let you display a same image (like button) in different position, and save your code
size, what you do is: change the CGP before calling the command set which display the image(button?).

� of �17 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

 Move area on the screen(MAxywhOxOy) � � �
Command: MA, follow by the top-left coordinate of the area, then the area width and height, all as pixels the Ox, and
Oy are the offset refers to (x,y), it will move the area(x,y)-(x+width,y+height) to new top-left position of(x+Ox,y+Oy),
the value of Ox, Oy are -127~127.
This function is useful to scroll screen in 4 directions.
Arduino lib function:moveArea(x,y,w,h,Ox,Oy); 

� of �18 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Drawing Decoration

 Clear screen(CL) � � � �

Command:CL, clear the screen panel. � � � : use current background color to clear the screen.
This function also reset current font to 0, screen rotation to 0, x position to 0, draw mode to ‘C’, draw window to full
screen, line pattern to 0xff.
Arduino lib function: clearScreen();

 Set background color(BGC) � � �

Command: BGC, in � , this command only transfer current foreground color to background, so, you need set a
foreground color first, then use “BGC”, the background and foreground have same color now.

In � , you need specify the one byte value of color (256 color depth,332 format) follow this command. eg.: set a red

background: “BGC\xE0” in � , “SC\xE0BGC” in � .
Arduino lib function: setBgColor(c);

 Set foreground color(SCc,ESCrgb) � � �
� There are 2 commands to set foreground color: “SC” then follow by a byte to set 256 color depth, and “ESC”
follow by 3 bytes to set 262K color depth, the color format refer to “EDIM1” and “EDIM3” commands.

� Only 2 different value for these display module: 0 and 1.
Arduino lib function: setColor(c); setTrueColor(r,g,b);

 Set line pattern(SLPd) � � �
Command: SLP, follow by a byte indicate which pixel should display or not, there are 8 bits in a byte, so when
drawing line, the module will repeat every 8 bits according to the line pattern value.
eg.: “SLP\x55” command will let the draw line/rectangle function to draw a dotted line, because “\x55” equal:
0B01010101, if the bit is 0, that pixel will not displayed.
If the line pattern value is: 0B11010111, the drawing line is dashed.
Arduino lib function:setLinePattern(d);

 Set draw direction(SDd) � � �
Command: SD, then follow by the 0,1,2,3 direction you want, the original direction is 0, direction 1,2,3 represent
90,180 and 270 degree clockwise(also means turn display panel anti-clockwise). if the value out of {0~3}, the final
direction is: d%4, means, value 4 is 0 direction, and 5 is 1 direction…
Arduino lib function: setRotation(d); undoRotation(); setRot90(); setRot180(); setRot270();

 Set draw mode(DMd) � � �
Command: DM, follow by a byte of draw mode which only one letter can be used from {C,|,!,~,&,^,O,o}. Draw mode is
used to tell the module how to display the color of pixel using current foreground color operating with the existing
pixel, there are 6 modes available:

� of �19 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

’C’-Copy, doesn’t matter the existing pixel on screen, this mode use current foreground color to over write the pixel,
for “TT” command, it also clear the char box as back ground color, all other modes will not clear the char box.
 ‘|’-Or (the “or” letter is not capital i, it’s the shift value on key “\”), use current foreground color “OR” with the existing
pixel.
‘!’ or ‘~’-Not, doesn’t matter the current foreground color, it just “NOT” the existing pixel.
‘&’-And, use current foreground color “AND” with existing pixel.
‘^’-Xor, use current foreground color “XOR” with existing pixel.
and all other letter: ’O’ or ‘o’ means “Over write”, similar with ‘C’, but not clear the char box when using “TT”. This
mode will let you display text on a picture nicely.
eg.: at (20,20), the pixel color is red: 0B11100000, the foreground color is: 0B00011111, if the draw mode is OR, then
when you draw a pixel at (20,20), the new pixel color is White, 0B00011111 OR 0B11100000 =0B11111111, this value
is White color. But, if you set the draw mode is AND, the new color is Black.
Draw mode will affect all out put on screen except: display image, clear screen and clear draw window.
Arduino lib function: setMode(d);

 Set output/draw window(DWWINxywh) � � � �
Draw window was embedded since firmware version 3.2 and later, instead of output to full screen, user can set a
smaller rectangle area as draw window, then all following output will be showing in this window and the coordinate
also refers to the top-left corner of draw window. This ability provide user a new way to relocate an area of content on
the screen to different location easily, just change the draw window to the desired location, then done.
Command: DWWIN, follow by top-left coordinate value (x,y), then draw window’s width (w) and height (h) all value in
pixels.

� there are some bugs for this function: the value of draw window box will not be adjust when changing draw
direction, if you need to use draw window in different draw direction, set draw direction first, then set draw window

later. in � , the module will adjust the value of draw window automatically when draw direction changed.
Arduino lib function: setDrawWindow(x,y,w,h);

 Reset draw window(RSTDW) � � � �
Command: RSTDW; remove the current draw window, what the module do is set the new draw window to full screen.
Arduino lib function: resetDrawWindow();

 Clear draw window(WINCL) � � � �
Command: WINCL, clear the draw window use background color.
Arduino lib function: cleanDrawWindow();

For Mono display only

 Refresh screen instantly(FS0/1) � � �
Command: FS, follow by a byte of value 0 or 1. if value is 0, the module will not refresh the screen until it receive a
fresh screen command such as “FS2”, if the value is 1, the module will refresh the screen from internal screen buffer
to screen when the module is idle (no more pending commands in receiving buffer) automatically.

� of �20 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

This command only available on Black/White display module, the color module always refresh the screen instantly
because no screen buffer used in onboard MCU.
If you need update the screen rapidly, disable the auto-refresh will help to avoid the screen flicking: draw all
information to the screen buffer in MCU, the refresh the screen at once.
Arduino lib function: flushScreen(d);

 Set screen Normal/Inverse(INV0/1) �
Command:INV, follow a byte of value 0 or 1 to indicate the screen content normal or inverse, this command only
available on some monochrome module, and the content is affected instantly.

� of �21 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Fonts
Only u8glib format font can be used in our module, you can find vary of font data from here: https://github.com/
olikraus/u8glib/tree/master/fntsrc, the list of available font is here: https://github.com/olikraus/u8glib/wiki/fontsize.
If none of standard u8glib font meet your requirement, we also provide an online tool to convert image file to custom
u8glib compatible font data, the instruction is here: http://www.digole.com/forum.php?topicID=330

 Change current font(SFd) � � �
There are 7 fonts pre-installed in onboard MCU, the fonts’ code and name are:

 The module also reserved flash memory space for each user fonts, the available user font space depends on the
flash chip installed or not, if none flash chip on module, the user fonts will use MCU flash memory, and memory
space for each font is 3584 bytes.

� If flash chip installed, the user fonts will stored in the chip, and the size for each font is 65K bytes.

� When you want to change current font, use command: SF, follow by the font’s code.
Arduino lib function: setFont(d);

 Download standard user font(SUFnL…d…) � � �
(You can use “SF”+200~203 command to use these fonts which downloaded by this command).
Command: SUF, follow by a byte of the index number of user font space, then 2 bytes of data length of font, then the

font data. Please note, in � and early version, the font length send to module is: LSB, MSB formation, but since

� , the format changed to MSB, LSB.
eg.: save a user font to 201, the length is 1500 bytes, the command sequence should be:

� : “SUF\x01\xDC\x05…data….”, � :“SUF\x01\x05\xDC…data….”.
40ms delay is needed after each 64 bytes of data send out, refer “Write data to flash” command.

Arduino lib function: downloadUserFont(length, *data, index); //if your module is: � , put: #define V33 at the top of
your sketch

 Download user font to flash chip(FLMWRal…d…) � � �
There is no special command to download font data to flash chip, instead of it, use regular “download data to flash
chip” command:FLMWR to any address in the flash chip, then use the next command to tell the module use this font.

Font code Font name Font code Font name

6 u8g_font_4x6 200 User font 1

10 u8g_font_6x10 201 User font 2

18 u8g_font_9x18B 202 User font 3

51 u8g_font_osr18 203 User font 4

120 u8g_font_gdr20

123 u8g_font_osr35n

0(default) u8g_font_unifont

� of �22 43

https://github.com/olikraus/u8glib/tree/master/fntsrc
https://github.com/olikraus/u8glib/tree/master/fntsrc
https://github.com/olikraus/u8glib/wiki/fontsize

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

There is no limitation on the numbers and size of font in flash chip, until the memory size of the chip full.
Following FLMWR, there 3 bytes to indicate the start address in chip, and 3 bytes indicate the length of data, all MSB
first, then follow by all data byte. 3 bytes can access the address/length 0~16,777,215, and the onboard flash chip
usually 2MB~16MB.
Note: You need to erase the flash memory space before writing data, please refer to the “erase flash memory
command”.
40ms delay is needed after each 64 bytes of data send out, refer “Write data to flash” command.
Arduino lib function:flashWrite(address,length,*data);

 Use user font in flash chip(SFFa) � � � �
Command: SFF, follow by 3 bytes of address which the font data in flash chip start from.
Arduino lib function: setFlashFont(address);

Command Set

 What is command set?
The command set is a command sequence which contain one or more commands and data, that do complicated
drawing functions on the screen. Save the command set in the flash chip or MCU flash, run this command set when

you needed later, using command set will save you lot of hardware and software resources. � A command set must

end with an extra byte of value 255, � but earlier version, you need put 2 bytes value on the beginning to indicate
the data length of command set.
YES: Only setting and drawing functions (draw Text or graph) can be put in command set. NO: Functions to read
data from module and write data to EEPROM and flash can’t be embedded in command set.
CHANGE:
Few functions are little bit different when used in command set than regular:
Commands : DIM, EDIM1, EDIM2, EDIM3, these 4 command will show a picture on screen, in regular usage, the top-
left coordinate will follow the command, then width and height. But when it in command set, the width and height will
follow to the command directly, the top-left coordinate is the CGP, that means you need set CGP before these 4
commands in command set, this will give you the ability to display same images at different location on screen.
Command: LT. Line to command accept destination coordinate in regular usage, but it accept the coordinate offset
when used in command set.
eg.: “GP\x0A\x10TTHello user\x00LN\x00\x12\x30\x12LT\xD0\x01LT\x30\x00\xFF”, this command set will display
“Hello user” at (10,16) position, then draw line from (0,18) to (48,18) to (0,19) to (48,19). and end with “\xFF”. the hex
value of \xFF is 255 in dec.

 Write command set to flash(FLMWRal…d…) � � � �
Use regular write data to flash function to save command font in flash, if flash chip installed onboard, all 2MB memory

can be used for command set, also in � , if no flash chip installed, the 16KB memory which used for welcome
screen and user fonts can be used for command set also, the welcome screen is a real command set.
40ms delay is needed after each 64 bytes of data send out, refer “Write data to flash” command.
Arduino lib function: flashWrite(address,length,*data);

� of �23 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

 Run command set(FLMCSa) � � � �
Command: FLMCS, follow by 3 bytes of address which indicate the beginning of command set, 3 bytes address
format allow the module access all 2MB memory in flash chip.

Read data from communication port
When you issued commands which need return data, the data can be read from the same communication port.
On UART mode, the returned data use same Baud rate and setting, if the data returned as bulk, the master need to
poll the new data on the port continuously or use interrupt when new data received, there is no hand shake signal
between master and slave side.
On I2C module, the module will pull the clock line to low when data not ready, then release it, the master will clock
the data out then. The hardware I2C port do this handshake automatically, if the master side use software I2C, check
the clock line for release first.
On SPI mode, there is no hand shake in general, we use data out line (SDO) on the module (data in (SDI) on the
master) as hand shake line, when the data is not ready on module, the module keep the SDO low, and pull the SDO
to high when data ready, the master can check this line (SDI on master side), if the line high, pull the SS line to low,
and wait at least 10us, then shift 8bit data out. See the chart flow on page 7.

Use EEPROM(V3.3)� � �
There are 976 bytes of EEPROM memory could be accessed by user in firmware V3.3 and later, erase the EEPROM
cell is not needed before writing.

 Write data to EEPROM(WREPal…d…)
Command: WREP, follow by 2 bytes of address, 2 bytes of data length (MSB-LSB format), then the data.
Arduino lib function: writeE2prom(address,length,*data);

 Read data from EEPROM(RDEPal)
Command: RDEP, follow by 2 bytes of address, 2 bytes of data length (MSB-LSB format), after these 8 bytes of
command sent to the module, the master controller need to wait the data available on the communication port, read
out all desired data from the port.
Arduino lib function: readE2prom(address,length); read1();

Use Flash

 Use flash in MCU � �

If there is no flash chip installed onboard, you can use the 16KB flash, before � , the 16KB internal flash only can
be used for welcome screen and 4 user fonts, refer to “Flash Memory Map” on the beginning of this manual.

But since � , you can use the 16KB flash memory for command set as well, user can’t read out the data saved in
the internal flash memory.

 Use flash in flash chip
If the flash chip installed onboard, you can use the full 2MB~16MB flash chip to store welcome screen, user font,
command set and user data, all data in flash chip can be read out. the flash in MCU become unusable.

� of �24 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

 Write data to flash(FLMWRal…d…) � �
This command applicable to internal 16KB flash or external flash chip.
Command: FLMWR, follow by 3 bytes of start address, 3 bytes of data length (MSB, LSB format), then the data. This
command can write data to flash chip or internal flash memory.
Note: if write data to flash chip, you probably need to erase the desired memory first before writing, but you don’t
need to erase the memory in internal flash.
A delay is needed after each 64 bytes of data send to module, when writing to internal flash, the module is writing
every 64 bytes as bulk, and during the writing time, all new coming data from the communication port is lost. When
writing to flash chip, the delay also needed due to the flash chip is a serial device.
According to our test, a 40ms delay on each 64 bytes is working well for both internal and external flash memory
writing.
Also Note: the module will send value 17 on the communication port when writing to flash chip done, the master
controller can poll it and know when the writing done. But, writing to internal flash will not return this value.
Here is the sample code in C:
void flashWrite(unsigned long int addr, unsigned long int len, const unsigned char *data) {
 unsigned char c, b;
 unsigned long int i;
 write('F'); //write a byte to communication port
 write('L');
 write('M');
 write('W');
 write('R');
 write(addr >> 16);
 write(addr >> 8);
 write(addr);
 write(len >> 16);
 write(len >> 8);
 write(len);
 b = 0;
 for (i = 0; i < len; i++) {
 c = pgm_read_byte_near(data + i);
 write(c);
 if ((++b) == 64) {
 b = 0, delay(40); //delay 40ms
 }
 }
#ifdef FLASH_CHIP
 //check write memory done
 while (read1() != 17); //read a byte from communication port
#endif
 }
Arduino lib function: flashWrite(address, length, *data);

 Run command set(FLMCSa) � � � �
This command applicable to internal 16KB flash or external flash chip.

� of �25 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Command: FLMCS, follow by 3 bytes of address which indicate the beginning of command set, 3 bytes address
format allow the module access all 2MB memory in flash chip.

 Read data in flash chip(FLMRDal) � �
This command only applicable to external flash chip.
If the flash chip installed on the board, you can use it to save user data, and read the data when you need it.
Command: FLMRD, follow by 3 bytes of address, then 3 bytes of data length, all MSB format.
After this command issued, the master controller can read data from the communication port when data in module
ready.
Arduino lib function: flashReadStart(address,length); read1();

 Erase flash memory in flash chip(FLMERal) � �
This command only applicable to external flash chip. 

Only writing data to flash chip need this command, this command can erase only specific range of address on all �
color module. Because the erasing on the chip is operating as block, the module will save the useful data in the block
to the RAM on screen panel, erase whole block, then restore the useful data back, so, you may see a block of screen
at the left-bottom corner show some wild image, that is the data from the erased block.

In � module, there is not enough RAM to save data from flash chip block, so, all data in the block which the
address fall into the desired address range will be erased.
Command: FLMER, follow by 3 bytes of starting address, then 3 bytes of length which want to be erased. MSB first.
Arduino lib function: flashErase(address, length); 

� of �26 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Touch Panel
The touch screen controller onboard is TSC2046, which can control a resistive touch panel. The internal 12 bit A/D,
also can be used to monitor a voltage (battery voltage), an analog input (0~2.5V) and the chip temperature.

 Calibrate touch screen(TUCHC) � �
Even we already calibrated the touch screen before shipping out, you may still need to re-calibrate it after the module
installed in chassis. Send command “TUCHC” to module will let it run calibrate function and save the alignment
parameters in EEPROM.
Arduino lib function: calibrateTouchScreen();

 Read touched coordinate(RPNXYW) � �
After module received this command, the module will waiting until the touch panel pressed down, and then send the
touched position which mapped to screen pixel’s coordinate back to master (x,y), alway return 4 bytes, 2 integer
value, x first then y.
Arduino lib function: readTouchScreen(); read1();

 Read a click event(RPNXYC) � �
Similar with above function, but the module will return the coordinate data after touch panel released.
Arduino lib function: readClick(); read1();

 Read touch panel instantly(RPNXYI), check screen pressed � �
The 2 of above function will drive the module frozen until the touch screen pressed, if you only want to check the
touch screen pressed or not, this is the function for the software, it return a pair of out of range value of no press on
touch screen.
You also can check a hardware signal on the module when screen pressed, there is a PENIRQ signal on the 9pin
header, this signal will go low when screen pressed. This is the easiest way to quote the touch screen if there were a
free I/O pin on your master controller.
Arduino lib function: none

 Read voltage(RDBAT) � �
Connect a voltage on the Vbat pin on the 9pin header, then send command: RDBAT to module, the module will
return 2 bytes of data of voltage on the Vbat pin, MSB format, the unit is mV, the range is 0~10,000. eg.: if the 2 bytes
of value is: 18, 192, the voltage is: 18x256+192=4800mV, is 4.8V.
The input impedance is: 10kΩ
Hint: if the measured voltage is over 10V, a 2R voltage divider is needed.
Arduino lib function: readBattery();

 Read analog(RDAUX) � �
Connect the analog to the AUX pin on the 9pin header, then use this command to read it, we didn’t adjust the 2 bytes
result here, the data range is 0~4095, and represent 0~2.5V.
Use this format to calculate the real voltage: V=d*2.5/4096. (d is the reading data)
Arduino lib function: readAux();

� of �27 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

 Read temperature(RDTMP) � �
This command read the temperature of the chip, the format to calculate the temperature is:
T=(653-(d*2500/4096))/2.1 °C, d is the reading data.
Note, the temperature on the chip may be affected by the backlight heat of LCD screen.
Arduino lib function: readTemperature();

Power management

 Backlight brightness(BLd) � � �
The backlight brightness on all color LCD and MonoChrome GLCD modules� can be adjusted continuously by use
command: BL, follow by a byte of value 0~100, 0 will turn backlight full off, and 100 will turn backlight full on.
The backlight on all OLED modules are not adjust-able.
Arduino lib function: backLightBrightness(d); backLightOn(); backLightOff();

 Turn screen on/off(SOOd) � � �
Command: SOO, follow by a byte value 0/1, when d=0, the screen and the backlight will be turned off immediately,
that will save much power on the module, this function work on all module.
On most of modules, the module only consume few mA after screen turned off.
The content on the screen unchanged if screen turn off then turn on later.
Arduino lib function: screenOnOff(d);

 Turn MCU off(DNMCU) � � �
Even the MCU will enter sleep mode when no pending commands in the receiver buffer, you may also want to turn
the MCU into deep sleep mode manually.
Command: DNMCU, no following data needed, the module will check if there were more pending commands in buffer
before entering sleep, if there were, the module will not enter sleep mode.
The module wake up automatically when new data received, but if the COM mode is I2C, some dummy data are
needed to act as waking signal, so, use few write(0) then a delay 10ms is a good practice to wake up the MCU from
deep sleep.
The screen will keep on, and all content on the screen unchanged when MCU off.
Arduino lib function: cpuOff();

 Turn module off(DNALL) � � �
This command put all power off: backlight off, screen off, MCU enter deep sleep, the module will only consume
<0.05mA of current, the wake up sequence is same with wake up MCU, the module will restore backlight and put
screen on also after wake up, the content on the screen unchanged.
Arduino lib function: moduleOff();

� of �28 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Setting and configuration

 Start screen(welcome screen or splash screen)
Start screen is the first showing when power on, it is used to display your logo or information of the device, the start
screen can be modified and disabled by user.

� On the firmware V3.0 and earlier, the start screen only the bitmap on all monochrome modules, if the screen is
128*64 pixels, the start screen only use 128*64/8=1024 bytes of in MCU flash memory.

But in the later, we developed color graphic OLED and LCD modules � , the in MCU flash memory were not able to
store whole color of start screen, at that time, we use command set to show start screen.
You can use our online tool to convert your picture to bitmap start scree here:http://www.digole.com/tools/
PicturetoC_Hex_converter.php.

 Enable/disable start screen(DSSd) � � �
Command: DSS, if the following value is 0, the start screen is not show up on next power on.
Arduino lib function:displayStartScreen(d);

 Configuration show on/off(DCd) � � �
In default, the module will show start screen when power on, and also show the current COM mode after start screen
showed up, that will tell you what is the Baud on UART mode or the slave address on I2C mode.
If you want to manage this configuration show on the screen, use command: DC, then follow by a byte value 0 or 1, if
d=0, the configuration will not show on the screen on next power on.
Arduino lib function: displayConfig(d);

 Download start screen to module(SSSl…d…) � � �
Command: SSS, follow by 2 bytes of data length of start screen, then the data, as described before, the data
structure are different for monochrome module and color module.
In V3.2 and earlier version on color module, the command set also need 2 bytes of data to indicate the command set
length, when you downloading this format of start screen to module, 2 bytes of length follow to SSS to indicate the
length of rest data, and in the rest of data, the first 2 bytes to indicate the length of command set, their relationship is:
SSS (length+2) (length) (…data…).
Arduino lib function: downloadStartScreen(length,*data);

 Change I2C address(SI2CAa) � � � �
When you connect multiple modules on a I2C bus, every slave modules MUST be assigned with different address,
this function can change the default address of 0x27 to other value.
This command only work at I2C COM mode, you can’t use it at UART or SPI mode.
Command: SI2CA, follow by a byte of new address. The module use the new address instantly, it also save this new
address in internal memory, you don’t need to change it on the next power recycle.
Arduino lib function: setI2CAddress(a);

� of �29 43

http://www.digole.com/tools/PicturetoC_Hex_converter.php
http://www.digole.com/tools/PicturetoC_Hex_converter.php

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

 Set SPI mode(SPIMD0~3)
There are 4 mode for SPI, based on the Clock polarity and phase, the default is mode 0 (except V3.3, was mode 2).
Command: SPIMD, follow a byte to indicate the new SPI mode, the module will use the new mode on next power up.
This command only available on firmware V3.4 and later.

 Change UART baud(SBrate) � � � �
The module always on 9600 8N1 baud rate when power on if UART selected, and can be changed by using
command: SB, the follow vary bytes of baud rate, the module accept 2 format of data:
1) unsigned long int: 4 fixed bytes, MSB first.
2) numbers: vary length.
eg.: set the baud rate to 115200: “SB\x00\x01\xC2\x00”—long int format, or “SB115200”—number format.
The module will not save the new baud rate in memory, so, you always need to start your mater circuit on 9600 rate
first, then send the change baud rate command, then adjust the master’s rate to new.
Arduino lib function: DigoleSerialDisp mydisp(&Serial, rate);

 Config universal character LCD adapter(STCRcr\x80\xC0\x94\xD4) � �
Our universal character LCD adapter can work with different size of character LCDs: 0801,0802,0804, 1601, 1602,
1604, 2001, 2002, 2004, 4001 and 4002 if the LCD controller is KS0066U/F / HD44780 or compatible chip.
The default set is 1602, if your LCD is other than 1602, you need to use this command: STCR, follow by a byte for
column and a byte for row, the rest of 4 bytes is fixed for KS0066U/F / HD44780 LCD controller.
eg.: for 2004 LCD: “STCR\x14\x04\x80\xC0\x94\xD4”.
Arduino lib function: setLCDColRow(c,r);

 Config universal graphic LCD adapter(SLCDx…) � �
In the new version of Universal GLCD adapter V2, the firmware can recognize the KS0108, ST7920 and ST7565
(SPI) by itself. It also support ST7565 in parallel mode by using command of “SLCD3” and following 8 bytes of init
parameters, that pinout are same with for ST7920.
Because the ST7565 chip used widely in 12864 LCD panels, and it’s very flexible of configuration, you need set at
least 8 bytes of init parameters, if the ST7565 (SPI) not working well with this adapter, please use command “SLCD2”
following by 8 bytes of init parameters also:

The default init parameter set is equal to this command string: “SLCD2\xA6\xA2\xA0\xC0\x25\x81\x24\x40”.

valid value(HEX) Function Detail description

1 A6 / A7 Control the pixel normal or reverse A6=Normal(default), A7=Reverse

2 A2 / A3 Set LCD bias A2=1/9 bias (default), A3=1/7 bias

3 A0 / A1 Set the horizontal scan direction A0=Normal(default), A1=Reverse

4 C0 /C8 Set the vertical scan direction C0=Normal(default), C8=Reverse

5 20~27 Select internal resistor ratio(Rb/Ra) 25 (default)

6,7 81+[0~3F] Set screen contrast 81+24 (default)

8 40~7F Set RAM start address, 40 start 0, 7F start
3F 40 (default)

� of �30 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

You don’t need to use the following command to set up now.

only for older version V1 of PCB[Our universal graphic LCD adapter only work with monochrome 128*64 GLCD with

ST7920, KS0108 and ST7565 or compatible LCD controller.
Command: SLCD, follow by one or more bytes of data.
“SLCD0”, set the adapter for ST7920, “SLCD2” for ST7565.
“SLCD1”, “SLCD3” and “SLCD4xxx” are for KS0108, the reason of this is because the E and CS1, CS2 signal on
KS0108 can be config High or Low active logical level on different GLCD.
“SLCD1” for E↓, CS1↓ and CS2↓, “SLCD3” for E↓, CS1↑ and CS2↑ KS0108 GLCD, and “SLCD4xxx” can config the
E,CS1,CS2 independently, the “xxx” is for E,CS1,CS2 logical level, eg.: “SLCD4011” is same with “SLCD3”
command.
The adapter will remember the last config even power off, you don’t need to do this again after you seen the screen
work with the adapter correctly.

Arduino lib function: setLCDChip(x); //only for standard GLCD]

 Adjust LCD contrast(CTx) �
Command:CT, follow by a byte of value 0~100, this command only effective for 128*64 GLCD with ST7565 controller,
The contrast on GLCD use KS0108 and ST7920 controller only be adjustable by a hardware pot.
Arduino lib function: setContrast(x);

Others

 Delay a period(DLYx)
This command only available since V3.9, but this is a bug in V3.9: it will be halt if on I2C/SPI mode, fixed in V4.0.
Command: “DLY”, following with a byte of delay period, value 1 for about 0.25s.

� of �31 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Old manual, for reference only
Digole Serial:UART/I2C/SPI Character/Graphic LCD/OLED Display Module User

Manual 
(last updated: Oct. 10th 2015)

!
Summery 33
What benefits you if using these products in you electronic projects? 33

FEATURES 33
How to set up the communication mode? 34
Protocols: 34
Set up universal graphic serial LCD adapter: 34
1) For ST7920 LCD controller: 34
2) For KS0108 controller: 34
3) For ST7565 controller: 34
Commands List 35
Character/Graphic Display Shared Command 35
Graph Display Command: for mono and color serial Graphic display only 36
Special Command to set universal 12864 adapter 39
New Command for firmware version 2.8 and up 39
Commands for touch screen panel 39
Commands for onboard flash memory 40
Communication Port 41
SD card and touch screen Port 41
FAQ 42

� of �32 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Summery
This manual will describe most common futures for our Serial LCD/OLED displays and modules, each particular
products may have different looks, size and material, but all interface to your master circuits and control commands
are same, that means you can switch Digole Serial display in your application without any modification of you
master circuit and software.
Our Serial display products are list bellow, you can purchase them with lowest price at: http://www.digole.com/
index.php?categoryID=153

What benefits you if using these products in you electronic
projects?

FEATURES

NOTE: for screen size >=255 pixels, you need 2 bytes to present the position or size, first send value 255,
then send the remainder, e.g. for position of:  
200: send 200 only  
255: send 255 then 0 (255+0=255)  
400: send 255 then 145 (255+145=400)  
the onboard MCU will check the first byte, if is 255, it will wait the second byte, then add them together.

• Save lots of the I/O resources: these products only need 1 to 3 I/O pins from your master controller that
depends on the communication type you want.

• Easy to use: the commands sending to products are easy to remember and understand.
On Graphic serial products:
• Save huge memory space to store font and start screen on graphic display: in graphic product, there are 7

preloaded fonts ready for your application, and also have 16KB memory space for your user fonts, once you
uploaded the start screen or user fonts, it will stored in products.

• Using user fonts function, you can display any graphs or characters in any language
• These products already integrated graphic functions such as: draw line/rectangle/circle/image, send few bytes

of instruction to products, it will do it for you, that also save your lots of code space
• You can display contents in 4 different directions: 0º, 90º, 180º, 270º(clockwise) on same screen, the product

will map the coordinate accordingly.

• Communication mode: UART/I2C/SPI,
detect your setting automatically

• Receiving buffer: 64/2048 bytes
• Work with all microcontroller and

microprocessor
• Communication signal can work on 3.3V

and 5.0V TTL
• Default setting: UART baud 9600bps,

I2C 0x27 address

• Low power consumption: less than 4mA (for
adapter only, completed module may higher
depends on the backlight power consumption)

• Simple command sets, easy to remember
• Simple graphic engine integrated (Graphic

Products)
• 7 preloaded fonts, font’s data structure full

compatible with U8Glib(Graphic Products)
• UART baud (bps): 300, 1200, 2400, 4800, 9600,

14400, 19200, 28800, 38400, 57600, 115200

� of �33 43

http://www.digole.com/index.php?categoryID=153
http://www.digole.com/index.php?categoryID=153

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

How to set up the communication mode?
 
There are 3 different communication modes on all products: UART, I2C and SPI, what you
need is just use solder to short the I2C/SPI jumper on adapter and make it works at I2C or
SPI, if both jumpers are open, it works at UART, you can find a similar jumper like this: on
board.
PROTOCOLS:

• UART : 8-N-1, 8bits, No parity bit, 1 stop bit.

• I2C: Slave Mode, 7-bit address, default address is Hex:27, change able. This mode may give you a headache
due to more signal options in I2C, but we make it works as standard, you just need setup your I2C on master
controller as Standard Master Mode.

• SPI: 8-bits, MSB first, data on raise edge of SCK sampled; this is Standard setting on SPI too.

SET UP UNIVERSAL GRAPHIC SERIAL LCD ADAPTER:
1) For ST7920 LCD controller:

• Verify and compare the pinout on adapter and LCD panel, they should be same on order (refer to the picture
bellow);

• Pull up PSB pin (usually pin# 15) to VCC to let the LCD panel work at parallel mode;
• Connect the adapter with the LCD panel, adjust the contrast pot, power up the adapter, you should see the

welcome screen displayed.
2) For KS0108 controller:

• Verify and compare the pinout on adapter and LCD panel, they should be same on order (refer to the picture
bellow);

• Shorting the 2 KS0108 jumper: 7 on the picture;
• In most case you need add a 10K contrast pot by yourself;
• Connect the adapter with the LCD panel, power up the adapter, send chip configuration command (refer to above

table) to adapter;
• Adjust the contrast pot, you should see the welcome screen displayed, if not, you probably need to try other value

(1,3,4) in chip configuration command.
3) For ST7565 controller:
NOTE: There are vary of ST7565 LCD panels on market, and the pin out are vary from one module to others, this
adapter only support SPI mode on the LCD panel, you usually need to connect pins on this adapter with LCD panel
corresponding.

• Connect the pins on the adapter with LCD panel corresponding;
• Power up the adapter, then send chip configuration command to adapter (“SLCD2”), then you will see the

welcome screen on the panel;
• You can use the set contrast command to adjust the contrast (ST7565 support software contrast adjustment).

� of �34 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Commands List
CHARACTER/GRAPHIC DISPLAY SHARED COMMAND
 (B-one byte, B…-Bytes, see note)

Command Description Arduino lib function note Char  
Display

Mono-
Graph

Color-
Graph

CL

CLear screen and set the display position to first
Column and first Row (x=0.y=0), for graphic LCD,
it also set the font to default and turn off the cursor.  
For color display with firmware V3.0 and later, this
will fill the screen with background color.

clearScreen();

The module will
not execute this
command until
other command
received.

√ √ √

CSB set CurSor on/off enableCursor(); 
disableCursor(); B=0 off, B=1 on √ √ √

BLB Set Back Light ON/OFF, B=0 or 1, 0: off, 1: on.  
TFT LCD module: B=0~100 set the brightness.

backLightOn();  
backLightOff();  
setBackLight(0~100);

unavailable on
Character Adapter
V1.x

√ √ √

SOOB Set Screen ON/OFF to save power  
 B=0 or 1, 0:off, 1:on

For GLCD/OLED
only √ √ √

DCB

Display Config on/off (Current communication
setting).  
Module will display the config when next power on
if COM mode changed even you turned it off.

displayConfig(0); 
displayConfig(1); B=0 off, B=1 on √ √ √

SBB…

Set UART Baud, B are ASCII characters, the
available values are: “300”, “1200”, “2400”,”4800”,
“9600”, “14400”, “19200”, “28800”, “38400”,
“57600”,”115200”

Set BAUD when initial
the class

When adapter
power up or reset,
always start with
9600bps Baud
rate

√ √ √

SI2CAB Set I2C Address,the default address is 0x27, the
adapter will store the new address in memory setI2CAddress(0x34); Change address to

0x34 √ √ √

STCRBB
BBBB

Set Text Columns and Rows, this command will
config your LCD if other than 1602 and the chip is
other than KS0066U/F / HD44780

setLCDColRow(20,4);

The last 4 B
should
be“\x80\xC0\x94\
xD4”, it mapped
the starting RAM
address on LCD

√

TPBB set Text Position for following display, BB are x and
y setPrintPos(x,y);

Only affect the
following “TT”
command

√ √ √

TTB…

display TexT string, the text will wraped in next row
if the current row fulled, the Text Postion will be
changed to the last char displyed, this command
terminated by 0x00 received.

print(string); 
print(int); 
print(char);  
print(float);  
print(double); 
drawStr(x,y,string);

The print function
in Arduino, can
also print other
data and format
the out put.

√ √ √

MCDB
Manual CommanD: send command B to display
bypass the adapter directCommand(0xaf);

Use it if you want
to control the
display directly

√ √ √

MDTB Manual DaTa: send data B to display bypass the
adapter directData(0x88); Same as above √ √ √

� of �35 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

GRAPH DISPLAY COMMAND: FOR MONO AND COLOR SERIAL GRAPHIC DISPLAY ONLY

Command Description Arduino lib function note Mono 
Graphic

Color  
Graphic

GPBB set Graphic Position for following draw line
command, BB are x and y in byte

setPrintPos(x,y,1); X,y=0 to 255 √ √

DMB

Set the Display Mode for on coming command, the
available values for B are:
1) “C” as Copy,
2) “!””~” as NOT,
3) “|” as OR,
4) “^” as XOR,
5) “&” as AND.
 These mean the next drawing pixel will logic
operation with pixel already on screen.

setMode(‘!’); Like the Bitwise
Operator in C

√ √

DIMBBB
BB…

Display Image, 1st B is x position, 2nd is y, 3rd B is
image width, 4th is height, then following data.  
Each byte present 8 pixels, if the image width not
divide 8, the last byte of a row only contain few
pixels, eg. For width of 9 to 16, you need 2 bytes for
a row.  
If this command is running from Flash, x,y value not
needed, use current position instead.

drawBitmap(x,y,width,
height,*data);

√ √

SDB

Send graphic fuction Direction, the value of B is 0 to
3, represent0 to 270 degree respectively.

setRotation(0);  
undoRotation(); 
setRot90(); 
setRot180(); 
setRot270();

The setRotation();
will accept 0 to 3
represent0 to 270
degree respectively

√ √

CTB Set display ConTrast, only for some models, Only for
ST7565 LCD Controller

setContrast(30); Only for ST7565
LCD Controller √

FRBBBB

Draw a Filled Rectangle, 4 B are: X,Y(left top), X,Y
(right bottom).  
If this command is running from Flash, x,y value not
needed, will use current position instead, and follow by
width and hight(not right-bottom position)

drawBox(x,y,width,hei
ght);

In order to
compatible with u8g,
drawBox() in
Arduino use width
and height

√ √

DRBBBB

Draw a Rectangle, 4 B are: X,Y(left top), X,Y (right
bottom).  
If this command is running from Flash, x,y value not
needed, use current position instead, and follow by width
and hight(not right-bottom position)

drawFrame(x,y,width,h
eight);

drawFrame () in
Arduino use width
and height √ √

CCBBBB
Draw a CirCle, 4 B are: X,Y, radius, filled or not.  
If this command is running from Flash, x,y value not
needed, use current position instead.

drawCircle(x,y,r,f); 
drawDisc(x,y,r);

f=1 means filled
circel √ √

DPBB Draw a Pixel, 2 B are: x,y. The color was set up by
commands of “SC” or “ESC”

drawPixel(x,y); √ √

LNBBBB

Draw a Line from (x,y) to (x1,y1), 4 B are: x,y,x1,y1 drawLine(x,y,x1,y1); 
drawHLine(x,y,width); 
drawVLine(x,y,height);

drawHLine()-
horizontal line  
drawVLine()-
veritcal line

√ √

LTBB Draw a Line from Tast position to (x,y), 2 B are:x,y drawLineTo(x,y); √ √

TRT

Move text cursor to next line(call Text ReTurn) nextTextLine(); The y pixels moved
depending on the
font size current
using

√ √

� of �36 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

 
SFB or

SFFBBB

Set Font, follow by the font number, preloaded font
number is: 6,10,18,51,120,123,0(default), user font
number is 200,201,202,203 maps to 4 user font
memory sections, you can combine adjacent sections
together is the font size >4kb(each section has 4kb in
size).  
SFFBBB Set Font in Flash, only for Flash memory
module, follow with 3 bytes of address in flash

setFont(0);

setFlashFont((long
int)0x20000);

√ √

SCB

Set Color for following display, this command affect
all following drawing command, such as: text, line,
circle, pixel, rectangle…  
8 BIT color format: RRRGGGBB

setColor(1); 
setColor(0xE0);//Red

0 and 1 for black
white screen  
0 to 255 for color
screen

√ √

BGC
set current color as background color.  
Only available on firmware V3.0 and later

setBgColor(); √ 
(V3.0)

MABBB
BBB

Move rectangle Area on screen to another place, the 6
B are represent: (x,y)(left- top),(w,h)(width-height),
(xoffset,yoffset).

moveArea(x,y,w,h,xoff
set,yoffset); √ √

ETB
Enhanced set the current Text position Back to last
char, this function will allow you display multiple
chars at same position.

setTextPosBack();
√ √

ETOBB
Enhanced set Text position Offset, the 2 B are xoffset
then yoffset, it will adjust the text position in pixels

setTextPosOffset(xoffs
et, yoffset); 0 to 255 √ √

ETPBB Enhanced set Text Position as pixels on screen, the 2
B are x, y coordinate on screen setTextPosAbs(x,y); X,y=0 to 255 √ √

SSSBBB
…

Set Start Screen, 1st B is the High byte of data length,
2nd B is the Low byte of data length, following by
data.  
For mono display, the start screen is bitmap data;  
For color display, the start screen is commands set,
the first and second bytes are the commands length.  
N/A on Flash Memory module, use command set instead it.

uploadStartScreen(102
4, *data);

For mono display,the
length of data should
be: screen Width*High/
8, eg. For 128x64
LCD, the length is
1024 bytes.  
For color module, the
limitation is 2046 bytes

√ √

� of �37 43

PIN Description PIN Description

1
SDO: SPI mode only 
(Only for Touch and Flash Mem
Modules)

2 GND (0V)

3 SS: SPI mode only 
chip select control in, low active 4

I2C and SPI mode: 
SCK/SCL: Clock in  
UART mode: 
TX(Only for Touch and Flash
Mem Modules)

5

UART mode: 
RX  
I2C mode: 
SDA  
SPI mode: 
SDI

 6
 VCC: power supply  
1.8V to 9V or 3.3V to 9V
depends on the module

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

SUFBBB
B…

Set User Font, 1st B is section of memory you want
to upload, 2nd B is the lower byte of data length, 3rd
B is the higher byte of data length, following by data

uploadUserFont(1,143
4,*data); √ √

DSSB

Display Start Screen stored in memory, also set up
Automatic start screen display or not on next power
up. 
N/A on Flash Memory module, use command set instead it.

displayStartScreen(1 or
0);

1= on, 0=off

√ √

DOUTB Send a Byte to output head on board, the current
driving ability for each pin is: 25mA (Sink/Source) digitalOutput(0x1F); The output head are

vary from adapters √ √

SLPB
Set Line Pattern when drawing line, only for new
version firmware later than Jan. 2013.  
eg. B=0xAA is dot line, B=0xFA is dash line

setLinePattern(pattern);
Old version not
support this fucntion √ √

EDIM1B
BBBB…

Enhanced Display Image, 1 byte color format.  
The following 4 bytes are start positon: x, y, image
width, height, then following image data, each byte
represent one pixel, the color format in a byte
is:RRRGGGBB 
x,y value are not needed if running from flash memory, use
current position instead

drawBitmap256(x,y,wi
dth,hight, *data); √

EDIM2B
BBBB…

Enhanced Display Image, 2 byte color format.  
The following 4 bytes are start positon: x, y, image
width, height, then following image data, each pixel
occupy 2 bytes: B1:B0, the color structure:
RRRRRGGG, GGGBBBBB, MSB first. 
x,y value are not needed if running from flash memory, use
current position instead

drawBitmap65K(x,y,wi
dth,hight, *data);

Available on
firmware version 2.7
and higher

√

EDIM3B
BBBB…

Enhanced Display Image, 3 byte color format.  
The following 4 bytes are start positon: x, y, image
width, height, then following image data, 3 bytes
represent one pixel: Red, Green, Blue, the validate
value: 0 to 64 (6bits),that is:00RRRRRR,
00GGGGGG,00BBBBBB. 
x,y value are not needed if running from flash memory, use
current position instead

drawBitmap262K(x,y,
width,hight, *data); √

ESCBBB

Enhanced Set Color for following display, the BBB
are color Red, color Green and Color Blue, this
command affect all following drawing command,
such as: text, line, circle, pixel, rectangle…

setTrueColor(R,G,B); √

DWWIN
BBBB

Define a DraWing WINdow, follow by top-left
position: X,Y, then the drawing window’s Width and
Hight.  
NOT affect image display functions:DIM, EDIMx.

setDrawWindow(x,y,w,
h);

√ 
(V3.0)

RSTDW ReSeT the DraWing window to full screen. resetDrawWindow(); √ 
(V3.0)

WINCL Use current background color to clear the defined
drawing window. cleanDrawWindow(); √ 

(V3.0)

� of �38 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

SPECIAL COMMAND TO SET UNIVERSAL 12864 ADAPTER

NEW COMMAND FOR FIRMWARE VERSION 2.8 AND UP

COMMANDS FOR TOUCH SCREEN PANEL

Command Description Arduino lib function note

SLCDB

Only for multi-chip driver adapter:  
B=0 or ‘0’ for ST7920 
B=1 or ‘1’ for KS0108 (“E” Low, “CS1”&”CS2” Low)  
B=2 or ‘2’ for ST7565 
Since product after Apr. 20 2013:  
B=3 or ‘3’ for KS0108 (“E” Low, “CS1”&”CS2” High)  
B=4 or ‘4’ for KS0108 , follow by effective level for “E”, “CS1” and
“CS2”, eg. “SLCD4011” is same as “SLCD3”

setLCDChip(chip_num);
For Universal
Graphic Serial

LCD Adapter only

Command Description Arduino lib function note

DNMCU
Shut Down MCU to save energy, wake up by new commands
received, in order to wake up MCU properly, send some dummy
command (data 0) then wait few microseconds

DNALL

Shut Down whole module (MCU & Display panel) to save energy,
wake up by new commands received, in order to wake up MCU
properly, send some dummy command (data 0) then wait few
microseconds

Command Description Arduino lib function note

RPNXYI
Instant Read X, Y position when pen touching the panel, the output is
4 bytes data, first 2 bytes is X, second 2 bytes is Y, if pen is not
pressed on touch screen , it will return 0xFFFF, 0xFFFF.

The return value of X,Y
already mapped to pixels
on screen according to the

direction set (SD
command)

RPNXYW
Waiting and Read X, Y position when pen touching the panel, the
output is 4 bytes data, first 2 bytes is X, second 2 bytes is Y, the
module will halt until pen pressed

readTouchScreen(); same as above

RPNXYC Read a touchscreen click, it similar with “RPNXYW”, but will wait
till pen lift up readClick(); same as above(V3.0)

TUCHC
Calibrate the touch panel, the module will display 4 or5 cross line on
the screen one by one, and waiting user the touch the dots, then map
the touch panel to screen pixel on X, Y axises.

calibrateTouchScreen()
;

RDBAT
Read battery voltage, the battery should connect on the Vbat pin on
the module, out put is 2 byte integer. the result is millivolt.  
The maximum voltage measurable is 10V

readBattery();

RDAUX Using the internal 12bits A/D to read the voltage on AUX pin on the
module, out put is 2 byte integer, data range is 000H~FFFH. readAux();

� of �39 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

COMMANDS FOR ONBOARD FLASH MEMORY
The final commands set for flash memory might be changed in future.
The onboard flash memory could be 2M or 4M bytes, we organize whole space as block, the size of each block is
16K byte. You can store your data or Micro-command sets in that space.

Command Description Arduino lib function note

FLMERBBB
LLL

Erase the flash memory from BBB address till the length of LLL, this
function will use LCD RAM to buffer the erased sector(4096 bytes)
and then restore the datas un-want to be erased, you will see a band
of massive pixels at the bottom of screen.  
If you just erase the whole sector(eg.: 0 to 4095), the module will not
bother the LCD RAM

flashErase(address,length);

FLMRDBB
BLLL

Read LLL bytes of continious data from the beginning of address
BBB in Flash Memory

flashReadStart(address,length)
;

FLMWRBB
BLLL

Write data to beginning address of BBB in Flash Memory with data
length of LLL, once writing done, the module will send value 17
(XON) back to master controller.  
In order to make sure you don’t drive the receiving buffer over
flow(high speed at I2C/SPI mode, UART module always slower than
onboard MCU), you better write the data length <2048 at once, and
wait the XON response, otherwise, you need put some delay when
sending data, if you need write more data, just repeat this command
with different beginning address.

flashWriteL(address,length,*d
ata); 
flashWrite(address,length,*dat
a);

XON/XOFF is
used for software
flow control, the
value of XON is
17, XOFF is 19

FLMCSBBB

Running the command set in the beginning of BBB in flash memory.  
Command set is a collector of most commands available on the
module, but you can’t put touch screen function, flash memory
function and I2C address change function in it.  
In order to indicate the end of a command set, the last 3 bytes must
be 255 (0xFF).

runCommandSet(address);

some commands running
from flash are different

than usual: the X/Y
position not needed, use
current position instead,
this will give you more

flexible to drawing same
thing at different

positions

SFFBBB Use current font in flash, the BBB is the address in flash setFlashFont(address);

� of �40 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

Communication Port
Pinout

SD CARD AND TOUCH SCREEN PORT
The SD card port is not available on all Digole Serial Display Module, please check for the special product for more
details, The function of the pinout are already printed on the PCB, you can use this port to operate the SD card by
yourself:

GND Ground on the board DO Data Out from SD card

CLK Clock signal to SD card DI Data In to SD card

CS Chip Select signal to SD card, LOW activate SD-Vcc + Power supplier to SD card

PENIRQ Pen pressed down interrupt on touch screen, low activate Vbat Read battery voltage using onboard A/D

AUX Convert the analog signal on this pin to digital using on
board A/D (12bit)

� of �41 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

FAQ
Q: Some time, I can hear high pitch hum from module, why?

A: Your master controller has higher voltage than the display module, add 1K to 5.1K resistor series in the
data line will reduce this noise (we already add series resistors in CLK and SS line).

Q: What is the maximum speed on communication port?

A: Depends on the mode you selected, UART baud: 115200, I2C: 200KHz, SPI:200KHz, also depends on
the commands interpreted by the onboard MCU. Most of display module have 2K bytes of receiving buffer,
just don’t drive the buffer overflow.

Q: Can modules work with 5V TTL controller?

A: Yes, it can work with 3.3V and 5V TTL/CMOS controllers. Even with 1.8V system but not test
comprehensively.

Q: What the difference between V2.9, V3.0 and V3.1 on color modules?

A: The V3.0 introduced 3 new commands to let you display contents in a rectangle area and background
function:DWWIN—Define a DraWing WINdow, RSTDW—ReSeT the DraWing window to full
screen,WINCL—Use current background color to clear the defined drawing window.

 In version 3.1, you can use LF (\n in C) and CR (\r in C) to control the text position.

Color display module Firmware version history:
V3.7B: Fixed “ETO” function which can’t take negative value, and support WINBOND and SST flash chips
V3.6B: improved stability of touch screen function
V3.5: added B version which embedded a boot loader
V3.4:
Fixed SPI mode which was wrong in V3.3, and new “SPIMD” (set SPI mode) command introduced.
V3.3: 
1) Change welcome screen to command set.
2) Use user font 200~203 when Flash chip on board is available.
3) Provide 976 bytes of EEPROM to user.
4) Set back ground color command changed.
5) Download user font command changed.
V3.2:
1) Touch screen calibrate function improved.  
2) Drawing window automatically mapped according “set direction” function, user don’t need send “set drawing window” after
drawing direction changed.  
3) Fixed a I2C bug when user reading data from module(touch screen and flash memory), now, the SCL pin will keep low when
data is not ready in the module.(Clock Stretch)
V3.1:
1) The LF and CR characters are used to control text position now, not be used to terminate “TT” (print text) command now, user
must send value of 0 (\x00) to terminate the “TT” command.
V3.0:
1) Introduced Drawing Window functions, user can set a partial screen area as drawing window, then all drawing (except draw
picture) will out put in the drawing window, and the coordinate is refer to the drawing window, not to the whole screen.
Monochrome display module Firmware version history:

� of �42 43

! Digital Solutions Serial Character/Graphic LCD/OLED User Manual
!

V2.8: 
Added refresh screen command: FS, FS0 mean turn off instantly refresh screen, FS1 mean turn on it, FSx force to refresh screen,
FSx should be used with FS0, because the screen will not be refreshed until FSx, if you sent FS0 previously.

� of �43 43

